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Abstract
The nonlocal dynamical response of a ballistic nanobridge to an applied potential oscillating
with frequency ω is considered. It is shown that, in addition to the active conductance, there is
also a reactive contribution. This contribution turns out to be inductive for relatively small
frequencies ω. For bigger frequencies the current response is either inductive or capacitive,
depending on the ratio of ωL/vF, where L is the length of the bridge and vF is the Fermi
velocity.

1. Introduction

Starting in the 1970s point contacts and nanobridges have been
widely used for studies of elementary events related to electron
transport. Sharvin constriction [1] or a classical point contact
between two bulk conductors is realized when the width of the
constriction is reduced so that it is smaller than the electron
mean free path. In particular, these devices allow studies
of elementary scattering events related to electron–phonon
scattering and scattering of electrons by single defects (point-
contact spectroscopy, see, e.g., [2]).

Nanobridges with a width comparable to the Fermi
wavelength have been found to conform to the Landauer
conductance quantization theory [3] (see [4, 5] for a
review). Such a nanobridge can be formed by means of
negatively biased metallic gates on top of a semiconductor
heterostructure confining a two-dimensional electron gas. Thus
the understanding of details related to frequency-dependent
electron transport in these devices is of undoubted interest.

The dynamical response of ballistic structures was first
considered by Kulik et al [6] for a classical ballistic point
contact between two bulk metallic banks. It was shown that,
in addition to an active contribution to the impedance, there
also exists a reactive contribution of inductive nature. The
latter is called kinetic inductance. The purpose of this paper
is to investigate this phenomenon in a 1D ballistic structure
where the lateral quantization is of importance, namely a
ballistic nanobridge. To begin with, we wish to indicate
that an estimation of a kinetic inductance of a 1D bridge
cannot be realized without taking into account the dispersion
of the bridge 1D conductance G. To do this, let us at
first disregard the dispersion. Then the additional energy of

electrons acquired in the bridge under the bias V is

W ∼ 1

2
(eV )2

∂n3

∂μ
LA, (1.1)

where n3 is the 3D electron concentration, so that n3 LA is the
total number of electrons within the bridge, L is the length
of the bridge and A is the area of its cross section. We have
taken into account that only electrons within the energy layer
of a thickness eV near the Fermi level μ are accelerated by the
bias. Having in mind that

n3 = p3
F

3π2h̄3
,

∂n3

∂μ
= mpF

π2h̄3
(1.2)

(m is the effective mass) we can write

W ∼ 1

2

e2

G2

mpF

π2h̄3 LAJ 2, (1.3)

where J is the current and G is the bridge conductance. This
energy can be associated with a kinetic inductance Lk as

W = 1

2

Lk J 2

c2
. (1.4)

As is well known, due to transverse quantization the electron
spectrum in 1D systems is represented by a number of quantum
channels, i.e. minibands, with the dispersion law εn(px) (n
being the number of a channel). One can rewrite G in terms
of a number of quantum channels N as

G = G0N where N = Ap2
F/4π h̄2 (1.5)

and
G0 = e2/π h̄. (1.6)
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G0 has units of velocity. We have

G0 = 6.96 × 107 cm s−1. (1.7)

Thus finally we obtain

Lk ∼ e2c2

G2

mpF

π2h̄3
LA ∼ 4c2

GvF
L, (1.8)

where vF = pF/m. In particular, for L = 10−4 cm, N
= 10 and vF = 106 cm s−1 we have Lk about 500 cm. To
estimate the limits of observability of Lk one should compare
the inductive resistance ωLk/c2 with the dissipative resistance
G−1. As is seen, their ratio becomes much larger than unity for
frequencies

ω � vF

L
(1.9)

that, for the values of the parameters above, give ω/2π bigger
than ∼10 GHz. Physically this condition means that the
frequency ω/2π should be larger than the reciprocal electron
time of flight. For the frequencies satisfying equation (1.9) one
should take into account the dispersion1 of conductance G. In
other words, to treat the kinetic inductance we have to work
out a theory of nanobridge conductance G(ω).

We will treat the situation where the nanobridge is
surrounded by other conductors, including, in the first place,
the split gates, which suppress electric fields outside the
nanostructure. This is a principal difference from the situation
considered by Sablikov and Shchamkhalova in [7] where no
conductors outside the nanobridge were presumed, except
plane electrodes at the contacts of the bridge. Below we will
discuss the difference between our results and those of [7].

We will see that, because of the electron–electron (e–
e) interaction, the screening radius a enters the equations
describing the spatial distribution of the electric field and
current. It is interesting to note that this is the case provided
the radius of screening is smaller than the lateral width b of the
conductor. In the opposite case, where a � b, b plays the role
of the screening radius. This situation is analyzed in detail in
appendix B.

Based on the studies of [7, 8] one could expect that the
results obtained by these authors including, in particular, the
reactive impedance, are generically of a quantum nature. We
believe, however, following Kulik et al, that the physics behind
the reactive component of the impedance in the case considered
is of a purely classical nature. We will show this for the
dynamical inductance. In this paper we take into consideration
the effect of lateral quantization but otherwise formulate the
problem on the basis of a classical approach. Such an approach
will permit us to derive an equation for the impedance Z(ω)

1 As indicated in [11] and [12] in a 1D sample of finite length a phase
transition of a specific nature is possible. It takes place at the temperature
�c = 2πvc

F/L determined by the strength of the e–e interaction. Here vc
F is

the renormalized value of the Fermi velocity with regard to this interaction.
One can expect special behavior of G(ω) for the frequencies ω ∼ ωc ≡
�c/h̄. However, for larger frequencies satisfying (1.9) one can disregard
this phenomenon—see section 4 of paper [12]. The reasoning of this paper
concerning the temperatures T � �c is valid for the frequencies h̄ω � �c =
2πvc

F/L as well. It shows that the role of the e–e interaction forω � 2πvc
F/h̄L

is in replacement of vF → vc
F.

covering the whole classical interval of frequencies ω where
the dispersion is of importance, i.e. the frequency range

vF/L � ω � εF/h̄, (1.10)

where vF is the Fermi velocity, L is the length of the 1D
conductor and εF is the Fermi energy. The problem we consider
depends on three lengths, namely a = 1/κ (the screening
length), L and vF/ω. We will consider in detail the cases
with different relations between these lengths. All of the
above-mentioned is related to a one-channel situation where
the electrons of a single channel take part in the transport
phenomena while the bottoms of other channels are above the
Fermi level. In this paper we will also treat a more involved
situation where several channels have bottoms below the Fermi
level and contribute to the ac current. Their relative role in the
transport will be discussed.

2. Single-channel conductance for a strong screening
case

So far we have considered a dc response, keeping in mind the
introduction of a concept of kinetic inductance and clarification
of the corresponding physics. Obviously, the most important
application of this concept is an ac conductance G(ω). In this
section we will discuss a strong screening case L � a where
a part of the applied bias V sharply drops at the edges of the
bridge, whereas the distribution function within the bridge is
a superposition of the contributions emerging from both banks
(cf. with the case treated in [6]):

f (ε) = θ(vx) f0(ε − eV/2)+ θ(−vx) f0(ε + eV/2), (2.1)

vx being the velocity along the axis of the bridge.
Equation (2.1) exploits the Liouville theorem, stating that the
distribution function is constant along a trajectory. If the
frequency ω of applied bias is so large that ω � vF/L the
relation between J and E = −∂ϕ/∂x is nonlocal. Namely, the
electrons at a point x within the bridge have a memory of the
bias at the moments t −x/vF and the charge distribution within
the bridge is non-homogeneous. Under such circumstances the
neutrality can also be violated.

To treat this situation and to visualize the physics we will
begin with semiqualitative considerations. We will discuss a
single-channel situation where the distribution is characterized
by a single value of the Fermi velocity along the x direction. It
is natural to expect that the applied voltage V = V0 exp(−iωt)
has three drops (see figure 1), i.e. Ṽ /2 corresponding to the
left edge of the structure, −E L (where E = E0 exp(−iωt))
corresponding to the channel where the electric field E0 =
const and the drop Ṽ /2 corresponding to the right edge. The
neutrality condition implies that the drops at the edges are
sharp—we will see below that their scale is determined by
the screening length a ≡ 1/κ where (ε being the dielectric
constant)

κ2 = 8πe2

Aπ h̄ε

∫ ∞

0
dpx

(
−∂ f0

∂ε

)
= 8πe2

Aπ h̄ε|vF| (2.2)

2
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Figure 1. Potential distribution (the bold curve is the real part) along
the bridge in a strong screening case. The potential has drops at the
ends of the bridge.

while the electric field E = E0 exp(−iωt) is coordinate-
independent within almost all the length L of the channel.
Naturally, we have

V = Ṽ − E L . (2.3)

The drops related to the edges of the channel (the edge
perturbations) provide the contributions ξ+ and ξ− to the
electron distribution function. In the linear approximation the
electron trajectories are unperturbed by the electric field E
within the structure and thus ξ+ and ξ− are given by standard
solutions (cf [6])

ξ = ξ+ + ξ−,

ξ+ = −eṼ

2

∂ f0

∂ε
exp[−iω(t − x/vF)],

ξ− = eṼ

2

∂ f0

∂ε
exp[−iω(t − (L − x)/vF)].

(2.4)

In its turn, the homogeneous electric field E gives the
following response of the electron distribution:

η+ =
∫ t

t−x/vF

dt ′(veE)
∂ f0

∂ε
. (2.5)

and

η− =
∫ t

t−(L−x)/vF

dt ′(veE)
∂ f0

∂ε
. (2.6)

Based on our assumptions we have

η+ = (veE0)

iω

∂ f0

∂ε
[exp(−iω(t − x/vF))− exp(−iωt)],

η− = (veE0)

iω

∂ f0

∂ε
[exp(−iω(t − (L − x)/vF))− exp(−iωt)].

(2.7)
The product (vE0) for two different directions of v has different
signs. For a homogeneous field the left-hand side of the
Poisson equation vanishes. Thus with regard to equation (2.4)
we have

e
E0vF

iω

∂ f0

∂ε
[exp(−iω(t − x/vF))

− exp(−iω(t − (L − x)/vF))]
= eṼ

2

∂ f0

∂ε
[exp(−iω(t − x/vF))

− exp(−iω(t − (L − x)/vF))] (2.8)

and

vF E0 = iω
Ṽ

2
, or E0 = ik

Ṽ

2
with k = ω

vF
.

(2.9)
The total conduction current through the channel proportional
to vF(ξ+ + η+ − ξ− − η−) is

J =
∫

p>0

dp

π h̄
vF

eE0vF

iω

∂ f0

∂ε
exp(−iωt)

× [exp(iωx/vF)+ exp(iω(L − x)/vF)− 2]
−

∫
p>0

dp

π h̄

e2Ṽ

2
vF
∂ f0

∂ε
exp(−iωt)

× [exp(iωx/vF)+ exp(iω(L − x)/vF)]
= −

∫
p>0

dp

π h̄
e2V vF

∂ f0

∂ε

1

1 − ikL/2
exp(−iωt) (2.10)

where k = ω/vF. We made use of the equation V = Ṽ (1 −
iωL/vF). The current is given by

J = G0V
1

1 − ikL/2
exp(−iωt). (2.11)

For kL � 1 the impedance Z(ω) defined as

Z = V

J
(2.12)

is almost purely inductive.

3. Conductance for a weak screening case

In the opposite limit of weak screening a � L the potential
drops at the edges vanish and the electric field within a channel
is equal to E = V/L. Only the terms with η contribute to the
current J and the result is

J =
∫

p>0

dp

π h̄
vF
vFe2 E

iω

(
−∂ f0

∂ε

)
exp(−iωt)

× [exp(iωx/vF)+ exp(iω(L − x)/vF)− 2]. (3.1)

In general the current depends on the coordinate x . This is
feasible in the absence of screening. J is naturally the same
at both contacts x = 0 and L. For the incoming and outgoing
conduction current Jc we have

Jc

G0V
= exp(ikL/2)

sin kL/2

kL/2
. (3.2)

However, in this case (contrary to the previous one) the
displacement current Jd related to the field discontinuity at the
contacts is dominant. The displacement current is determined
as

Jd = −i
ωε

4π
AEω(0). (3.3)

Therefore, for the total current J = Jc + Jd we have

J

G0V
=

(
−2i

k

κ2 L
+ exp(ikL/2)

sin kL/2

kL/2

)
. (3.4)

The impedance turns out to be capacitive. For kL � 1 the
first term in equation (3.4) is bigger than the second. However,

3
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the last term can be singled out as it oscillates as a function of
external parameters.

This makes an essential difference with the case of
complete neutrality where the impedance is always inductive,
the current within the bridge is distributed homogeneously and
this also holds for the electron kinetic energy density. The
bridge indeed behaves as a single inductor.

4. Quantitative analysis of nonlocal response

The field can be written as (see appendix A)

Eω(x) = V

L

(
1 + cosh γ (x − L/2)− (2/γ L) sinh γ L/2

α − cosh γ L/2 + (2/γ L) sinh γ L/2

)
,

(4.1)
and the potential as

ϕω(x) = V

2

× (1 − 2x/L)[α − cosh γ L/2] + (2/γ L) sinh γ (L/2 − x)

α − cosh γ L/2 + (2/γ L) sinh γ L/2
.

(4.2)

The potential distribution along the bridge is given in figure 1.
For the conduction current we get

Jω(x)

G0V
= γ 2

κ2

× tanh γ L/2 − i(k/γ )(1−cosh[γ (x −L/2)]/ cosh[γ L/2])
(1−ikγ 2L/2κ2) tanh γ L/2−k2Lγ /2κ2

.

(4.3)

For the total current using equation (3.3) we have

Jω
G0V

= (Jω(0)+ Jd)/G0V

= γ 2

κ2

(1 − k2/κ2) tanh γ L/2 − ikγ /κ2

(1 − ikγ 2 L/2κ2) tanh γ L/2 − k2 Lγ /2κ2
. (4.4)

In this case the (spatially dependent) conduction current is
nearly uniform along the bridge. In the limit a � L, ka � 1
the current coincides with equation (2.11). The last inequality
is equivalent to k2 � κ2 that can be rewritten as

ω2 � ω2
p where ω2

p = 8e2vF

Ah̄ε
. (4.5)

Now the 1D electron concentration n1 is

n1 = 2pF/π h̄ where pF = mvF (4.6)

so that

ω2
p = 4πn1e2

Aεm
, or ω2

p = 4πn3e2

εm
. (4.7)

ωp can be interpreted as the plasma frequency. The phase of
the response is determined from (we put tanh kL/2 = 1)

tanφ = 1 − (ka)2

2/kL − (ka)
√

1 − (ka)2
. (4.8)

The phase φ is π/4 for kL = ωL/vF 	 2.

Figure 2. The real part of the field along the bridge in the case of
weak screening is nearly uniform.

Let us turn to the opposite limiting case of weak screening.
We assume |vF|/ω � L � a. Now γ is given by

γ =
√

k2 − κ2 (4.9)

while the field is

Eω(x) = V

L

(
1 − cos γ (x − L/2)− (2/γ L) sin γ L/2

α + cos γ L/2 − (2/γ L) sin γ L/2

)
.

(4.10)
In this case, the dominant real part of the field is weakly
dependent on the coordinate (see figure 2). The potential is
given by

ϕω(x) = V

2

× (1−2x/L)[α + cos γ L/2] + (2/γ L) sin γ (L/2 − x)

α + cos γ L/2−(2/γ L) sin γ L/2
.

(4.11)

We get for the conduction current

Jω(x)

G0V
= γ 2

κ2

× tan γ L/2 + i(k/γ )(1 − cos[γ (x − L/2)]/ cos[γ L/2])
−(1 + ikγ 2 L/2κ2) tan γ L/2 + k2Lγ /2κ2

.

(4.12)

As is seen in figure 3 the conduction current in this case
oscillates along the bridge. To determine the total current let
us consider the conduction current at the ends of the bridge:

Jω(0)

G0V
= sin γ L/2

γ L/2
{(1 + κ2/γ 2) cos γ L/2

− (i
√

1 + κ2/γ 2 + 2κ2/γ 3 L) sin γ L/2}−1. (4.13)

The total current is given by

Jω
G0V

= γ 2

κ2

(1 − k2/κ2) tan γ L/2 − ikγ /κ2

k2Lγ /2κ2 − (1 + ikγ 2L/2κ2) tan γ L/2
.

(4.14)
The real part of the conductance vanishes provided sin γ L/2 =
0, i.e. for frequencies

ω = ωp

√
1 + (2πna/L)2,

4
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Figure 3. Conduction current distribution along the ballistic bridge.

Figure 4. Total current as a function of frequency.

the response is of a purely reactive nature. For κ2 � k2

the conduction current and the total current are given by
equation (3.2) and equation (3.4), respectively. The last
equation can be presented in the form

J = Jc + Jd = G0V

kL/2

[
−i

(
k

κ

)2

+ eikL/2 sin
kL

2

]
. (4.15)

The second term is much smaller than the first one. We
believe, however, that the oscillating term can be observed
provided a first or second derivative of the current over ω or
vF is measured. The current dependence on the frequency
ω/ωp ≡ k/κ is given in figure 4. One can see that there is
an interval of frequencies where the inductive contribution to
the current dominates.

5. Multi-channel conductance for strong screening

So far we have considered a single-channel situation with
a given value of the velocity vF. One can treat a multi-
channel case in the same manner, still assuming the overall
neutrality. Our reasoning will be based on the assumption
that the electrons in both reservoirs are in equilibrium at
the same temperature, the difference between their chemical
potentials being equal to eV . In this situation one has different
Fermi velocities v(n)F for different channels. The oscillating
functions ξ and η are also different for different channels and
the only way to support the neutrality is to have neutrality
conditions for each channel separately. The potential drops

Figure 5. Total current for two channels.

at the edges are still abrupt and determined by a. However,
the relations between the potential drops Ṽ and field E0 are
different for different channels. While all these drops are
related to electrochemical potentials, it means that the channels
are characterized by some partial chemical potentials different
for different channels. It is not an unusual case for a non-
equilibrium situation. In this way the overall charge neutrality
can be maintained. Having these considerations in mind, we
will have for a multi-channel case

G(ω)

NG0
= 1

N
n=N∑
n=1

1

1 − ikn L/2
. (5.1)

Correspondingly, for kL � 1 we have a purely inductive
response, the total inductance being a sum over the channels.

This contribution should be compared with the geometric
inductance Lg. We have

Lg = 2L ln
L√A . (5.2)

Omitting the logarithmic factor one can write the following
inequality for the preponderance of reactive resistance as
compared to the geometric one:

c2/GvF � 1. (5.3)

It can be easily satisfied.
Now let us concentrate on a two-channel case. First we

consider the case where the number of electrons within the
second channel is relatively small, so that the Fermi velocity
of this channel v(2)F is much less than the velocity of the first
channel v(1)F . We have k1/k2 = v

(2)
F /v

(1)
F � 1. The total

current is presented in figure 5. We are interested in the
region of relatively small frequencies ω � κv

(2)
F � κv

(1)
F

since for bigger frequencies the response is always capacitive
and coincides with the result for a one-channel case (this is
illustrated by the thin curves in the figure). In this case the
imaginary contribution to the current is always smaller than
the real one.

If the Fermi velocities of the two channels get closer the
imaginary inductive contribution to the current can be larger
than the real one. Then both channels are important and the
situation is illustrated in figure 6. The quality factor can be
larger for two channels than for a single channel, as is seen in
figure 7.

5
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Figure 6. Total current for the case where both channels are
important.

Figure 7. Quality factors for single channel and two channels.

6. Conclusion

For the treatment of our problem we used the Boltzmann
equation for a one-particle electron distribution function. As
is well known, a single-channel state is unstable and, as
a result, one gets the so-called Tomonaga–Luttinger (T–L)
liquid [9, 10]. In [7] G(ω) was calculated within T–L liquid
theory. For our purpose it is important that, for a weak
electron–electron interaction, in particular, for a small gas
parameter

g ≡ e2

πεh̄vF
, (6.1)

ε being the dielectric susceptibility, the results turned out
the same as within the Fermi gas approach. For g � 1
the only difference appears to be a replacement of vF by its
renormalized value vc

F. Having this in mind, we contented
ourselves with application of the Boltzmann equation for the
electron Fermi gas to treat our problem. The most essential
difference between [7] and the results of this paper is the
following. For g � 1 and k/κ � 1 we get equation (2.11)
whereas no such result is present in [7] under these conditions
because of a different electrodynamics. The kinetic inductance
(in general, kinetic complex resistance) can be registered in
a standard way by any phase measurement, in particular by
a measurement of the impedance of a contour including the
bridge and capacitor in parallel. According to our estimates,
the inductance can be readily made larger than the geometric

inductance and thus the properties of the circuit are insensitive
to the geometry. Then, Lk can be manipulated by variation of
the bridge parameters with the help of a split gate. The kinetic
inductance discussed above allows us to introduce relatively
easily inductive elements to nanoelectronic devices that can, in
principle, allow us to realize phase sweeping blocks. These
structures in the ballistic electron transport regime may find
applications in phase sweeping electronic devices, working in
the high frequency range. For instance, a feedback in active
or passive electronic devices, when the phase relationships can
be as important as the amplitude ones, can be provided by a
nanobridge.
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Appendix A. Treatment of a single-channel case

We will give a detailed calculation of the fields and currents.
We begin with the Boltzmann equation for a single-channel
situation:

d

dt
f = − f − f0

τ
, (A.1)

where
d

dt
= ∂

∂ t
+ v

∂

∂r
+ eE

∂

∂px
(A.2)

and τ is the time of relaxation (which would not enter the
final formulae). The solution of this equation by the method
of characteristics can be written in the form

f (x, p, t) =
∫ t

−∞
dt ′

τ
e(t

′−t)/τ f0(ε[px(t
′)]), (A.3)

where the integration goes over the trajectory determined from
the equations of motion:

dr

dt
= v,

dp

dt
= eE(r, t) (A.4)

so that px(t ′)|t ′=t = px , x(t ′)|t ′=t = x . The trajectory can be
written explicitly as

px(t
′) = px +

∫ t ′

t
dt1 eE(x(t1), t1), (A.5)

x(t ′) = x + px

m
(t ′ − t)+

∫ t ′

t
dt1

∫ t1

t
dt2 eE(x(t2), t2). (A.6)

Therefore equation (A.3) can be written as

f (x, p, t) =
∫ t

−∞
dt ′

τ
e(t

′−t)/τ f0

(
ε + px

m

∫ t ′

t
eE(x(t1), t1) dt1

+ 1

2m

(∫ t ′

t
eE(x(t1), t1)dt1

)2)
, (A.7)

or in the linear approximation with respect to the field

f (x, p, t) =
∫ t

−∞
dt ′

τ
e(t

′−t)/τ

×
(

f0(ε)+ ∂ f0

∂ε
vx

∫ t ′

t
eE(x(t1), t1) dt1

)
. (A.8)
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Now in the last equation the free motion trajectory x(t1) =
x+(px/m)(t1−t) can be used. Shifting the integration variable
t ′ = t + ξ and integrating by parts we get for � f = f − f0

� f = −evx
∂ f0

∂ε

∫ 0

−∞
dξ eξ/τ E(x + vxξ, t + ξ). (A.9)

Now we can put τ → ∞, considering the ballistic case. Then
we get

� f = −evx
∂ f0

∂ε

∫ 0

−∞
dξE(x + vxξ, t + ξ). (A.10)

We assume as the boundary conditions that the field vanishes
for E < 0 and E > L. This means for the trajectory coming
from the left bank vx > 0 that the integration is from −x/vx to
0:

θ(vx)

∫ 0

−x/vx

dξE(x + vxξ, t + ξ), (A.11)

and for the trajectory coming from the right bank with velocity
vx < 0 the integration is from (L − x)/vx to 0:

θ(−vx)

∫ 0

(L−x)/vx

dξE(x + vxξ, t + ξ). (A.12)

The result is

� f = −θ(vx)
∂ f0

∂ε

∫ x

0
dz eE(z, t + (z − x)/vx)

− θ(−vx)
∂ f0

∂ε

∫ x

L
dz eE(z, t + (x − z)/|vx |). (A.13)

We insert this solution into the Poisson equation and get

2

κ2

dE

dx
=

∫ x

0
dz E(z, t + (z − x)/|vF|)

−
∫ L

x
dz E(z, t + (x − z)/|vF|), (A.14)

Introducing the notation k = ω/|vF| we get the equation for
the field

2

κ2

dEω
dx

= −e−ikx
∫ L

0
dz Eω(z)e

ikz

+ 2
∫ x

0
dz Eω(z) cos k(x − z). (A.15)

The conduction current is determined from

Jω(x)/G0 = e−ikx
∫ L

0
dz Eω(z)e

ikz

+ 2i
∫ x

0
dz Eω(z) sin k(x − z), (A.16)

where G0 = e2/π h̄. First we consider a strong screening case.
Therefore we assume a � |vF|/ω � L. The Laplace transform
of equation (A.15) is given by

2

κ2
(pEp − Eω(0)) = − A

p + ik
+ 2

pEp

p2 + k2
, (A.17)

where

A =
∫ L

0
dz Eω(z)e

ikz . (A.18)

The original is

Eω(x) = Eω(0)

(
1 − κ2

γ 2
(1 − cosh γ x)

)

− Aκ2

2

(
sinh γ x

γ
+ ik

γ 2
(1 − cosh γ x)

)
, (A.19)

where
γ 2 = κ2 − k2. (A.20)

Using this relation in equation (A.18) we determine A:

A = 2Eω(0)
sinh γ L/2

γ cosh γ L/2 − ik sinh γ L/2
. (A.21)

Then for the field we get

Eω(x) = Eω(0)

(
1 + cosh γ (x − L/2)− cosh γ L/2

α

)
,

(A.22)
where

α = γ 2

κ2
(cosh γ L/2 − (ik/γ ) sinhγ L/2). (A.23)

For the potential we have

ϕω(x) = −Eω(0)

((
1 − cosh γ L/2

α

)
(x − L/2)

+ sinh γ (x − L/2)

αγ

)
. (A.24)

The boundary conditions imposed on the potential ϕω(0) =
V/2 and ϕω(L) = −V/2 yield

Eω(0) = V

L

α

α − cosh γ L/2 + 2(sinh γ L/2)/γ L
. (A.25)

Finally, the field can be written as

Eω(x) = V

L

(
1 + cosh γ (x − L/2)− (2/γ L) sinh γ L/2

α − cosh γ L/2 + (2/γ L) sinh γ L/2

)
,

(A.26)
and the potential as

ϕω(x) = V

2

× (1 − 2x/L)[α − cosh γ L/2] + (2/γ L) sinh γ (L/2 − x)

α − cosh γ L/2 + (2/γ L) sinh γ L/2
.

(A.27)

Appendix B. Screening in 1D nanostructures

We consider a 1D semiconducting structure surrounded by
a good conductor. Let us assume that there is an external
perturbation of the charge density:

ρ(e) ∝ eikx (B.1)

that brings about an electrostatic potential:

ϕ ∝ 1

k2
. (B.2)
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This is a would-be potential in dielectrics. The total potential
in semiconductors includes a part due to spatial redistribution
of conduction electrons, i.e. the effect of screening. It can be
found from

ε∇2ϕ = −4πρ, (B.3)

where ε is the dielectric susceptibility while ρ is the total
electron density ρ = ρ(e) + ρ(i), including the part

ρ(i) ≡ ∂n3

∂μ
eϕ

due to conduction electrons’ redistribution in the field ϕ (it is
linear in ϕ provided this quantity can be considered as small).
We are going to investigate this effect of screening in more
detail. We have

∇2ϕ ≡ 1

r

∂

∂r

(
r
∂ϕ

∂r

)
+ ∂2ϕ

∂x2
≡ d2ϕ

dr 2
+ 1

r

dϕ

dr
− k2ϕ (B.4)

ϕ|r=b−0 = ϕ|r=b+0,
∂ϕ

∂r

∣∣∣∣
r=b−0

= ∂ϕ

∂r

∣∣∣∣
r=b+0

, (B.5)

where b is the radius of a 1D conductor circular cross section.
Now we assume that ρ(e) has the form

ρ(e) = eikx f (r)ρ(0), (B.6)

where ρ(0) determines the scale of the charge density variation
due to external sources. The actual form of f (r) is immaterial
for analysis of a 1D screening provided f (r) vanishes for
r � b and is a smooth function for r � b. Now we have

d2ϕ

dr 2
+ 1

r

dϕ

dr
− λ2ϕ = −4π

ε
ρ(0) f (r) for r � b,

λ2 = k2 + κ2, κ2 = 4πe2

ε

∂n3

∂μ
, (B.7)

d2ϕ

dr 2
+ 1

r

dϕ

dr
− k2ϕ = 0 for r � b. (B.8)

In what follows it is convenient to take f (r) in the form

f (r) = ε

4πρ(0)
AI0(βr) for r � b where β � 1/b,

f (r) = 0 for r � b.

Here A is a constant and I0(z) is the modified Bessel function.
Equation (B.7) takes the form

d2ϕ

dr 2
+ 1

r

dϕ

dr
− λ2ϕ = −AI0(βr). (B.9)

A finite general solution for r � b can be presented as

ϕ = C1 I0(λr)+ 1

λ2 − β2
AI0(βr) (B.10)

while for r � b it is

ϕ = C2 K0(kr) (B.11)

where C1,2 are constants and K0(z) is the McDonald function.
As βb � 1 we can expand I0(βr) (see below). Making use of
boundary conditions (B.5) one gets

C1 I0(λb)+ A

λ2 − β2
= C2 K0(kb),

C1λI ′
0(λb)+ A/2

λ2 − β2
β2b = C2kK ′

0(kb).

(B.12)

We have for y � 1

I0(y) = 1 + y2/4, K0(y) = − ln(y/2)I0(y)+ψ(1), (B.13)

where ψ is the digamma function whereas for y � 1

I0(y) = 1√
2πy

ey . (B.14)

Now, kb � 1 and β2 � λ2. System (B.12) can be simplified
as

C1 I0(λb)+ A

λ2
= C2 ln

1

kb
,

C1λbI ′
0(λb)+ A

2λ2
(βb)2 = −C2,

(B.15)

so that

C1 = − 1[
I0(λb)+ (λb)I ′

0(λb) ln(1/kb)
] A

λ2
,

C2 = (λb)I ′
0(λb)[

I0(λb)+ (λb)I ′
0(λb) ln(1/kb)

] A

λ2
.

(B.16)

ϕ(r) for r � b can be presented in the following way:

ϕ(r) =
[

1 − I0(λr)

I0(λb)+ (λb)I ′
0(λb) ln(1/kb)

]
A

λ2
. (B.17)

Now we will treat two limiting cases. For

λb � 1 (B.18)

we get

ϕ(r) = 2b2 ln(1/kb)− r 2

4
A. (B.19)

(Here we have considered the quantity ln(1/kb) as big.) This
means that the screening is determined essentially by the radius
b, i.e. by the lateral dimensions of the conductor. In the
opposite case

λb � 1 (B.20)

we have

ϕ(r) = A

κ2 + k2
(B.21)

instead of ϕ = A/k2 in an isolator. The screening is
determined by a ≡ 1/κ .
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